
TRT	GatePOS	Middleware		 v1.0		 	 	 	 	 Ben	Mawson		2019-06-12		 	 	 		 	 1	

 TRT GatePOS Middleware
	
	
	
	

Contents
	
Terminology	 2	
Overview	 3	
Implementation	 4	
Environments	 4	
Components	 5	
Data	exchange	via	middleware	between	iOS	app	and	TS5	 6	
Hardware	 6	
External	services	 6	
Database	usage	by	component	 7	
Other	data	storage	services	 7	
Scaling	 7	
Real-time	monitoring	 7	
Redundancy	 7	
System	alerts	 7	
Support	set-up	 8	
Airline-specific	technology	 8	
Service	inter-operation	 8	
Back-up	contingency	 9	
Load	balancing	 9	
Middleware	payload	 9	
Middleware	monitoring	 9	
Further	Reading	 9	
	
	
	
	
	
	
	
	
	
	
	
	

TRT	GatePOS	Middleware		 v1.0		 	 	 	 	 Ben	Mawson		2019-06-12		 	 	 		 	 2	

Terminology
Cluster	 The	collection	of	independent	servers	on	which	the	middleware	services	are	

run	(on	AWS	EC2)	and	managed	by	Kubernetes.		

There	are	five	clusters,	respectively	for	Dev,	QA,	Staging,	UAT	and	Production,	
each	of	which	has	an	individual	configuration.		

	

Instance	 A	single	service	running	on	a	single	machine	at	a	given	time	in	the	cluster	
managed	by	Kubernetes.		

Multiple	instances	of		a	service	may	be	run	simultaneously.	

	

Middleware	Application	 The	entire	middleware	application,	comprised	of	several	services.	

Node	 A	physical	machine	in	AWS	EC2.		

Pod	 A	Kubernetes	concept	for	an	instance	(a	single	service	running	on	a	single	
node).	

https://kubernetes.io/docs/concepts/workloads/pods/pod/	

Service	 A	self-contained,	configured	component	of	the	application	that	provides	
network	connectivity	to	a	Kubernetes	pod.	These	are	replicated	so	that	
multiple	copies	are	running	simultaneously.	

Middleware	services:		

• api-gateway	
• api-mapping	
• data-composer																																					composer	or	composite	
• data-composer-scheduler	
• content	server																																						server	or	service	
• offload	server																																							server	or	service	

	 	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

TRT	GatePOS	Middleware		 v1.0		 	 	 	 	 Ben	Mawson		2019-06-12		 	 	 		 	 3	

Overview
	

	
The	middleware	is	built	using	Maven,	which	fetches	dependencies	and	ensures	they	are	where	they	need	to	
be	in	3rd	party	libraries.		
See	more	at:	https://maven.apache.org/	
	

Context
An	iOS	application	is	used	on	aircraft	by	flight	crew	as	a	Point	Of	Sale.		
The	iOS	application	communicates	via	the	middleware	with	Gate’s	back-end	server,	TS5,	which	provides	an	
inventory	for	a	flight	including	menu	options,	stock	availability,	information	regarding	the	specific	flight,	crew	
members	and	credit	card	blacklist.	
Middleware		

• receives	data	from	the	iOS	app	and	uploads	it	to	an	AWS	S3	bucket	for	collection	by	TS5.	
• receives	data	from	TS5	and	restructures	it	for	the	iOS	app.	

TS5	provides	significantly	more	data	than	is	required	by	the	iOS	app	so,	in	order	to	limit	the	data	download	
to	the	app,	one	of	the	middleware’s	functions	is	to	reduce	the	data	payload	to	transfer	only	that	which	the	
app	needs.	
Before	a	flight	commences,	a	catering	synchronisation	is	performed	between	the	iOS	app	and	the	
middleware.		Once	a	flight	is	completed,	the	iOS	app	bundles	flight	data	including	all	transactions	and	
uploads	to	the	middleware	before	deleting.			The	middleware	then	uploads	the	post-flight	data	to	S3,	from	
where	the	TS5	server	downloads	it,	on	a	schedule	determined	by	TS5.		
Example	excerpt	from	iOS	app	post-flight	data	upload:	

The	"shoppingCarts"	array	contains	all	the	orders	
that	were	completed.	The	middleware	does	not	
save	the	offloaded	data,	or	any	other	data	handled	
by	it.	

Structure	
The	Middleware	application	is	a	microservice-
based	infrastructure,	orchestrated	by	Kubernetes	
and	deployed	into	any	environment	capable	of	
hosting	Docker	containerised	solutions:	currently	
AWS,	which	allows	for	scalability	of	the	system.	
The	middleware	is	deployed	using	the	Blue-
Green	technique,	with	multiple	instances	of	every	
service	running	to	make	sure	that	each	service	has	
99%	up-time,	thus	avoiding	downtime	of	the	
services	during	the	infrastructure	updates.	
	

For	more	information	on	blue-green	deployment,	see:		
https://docs.cloudfoundry.org/devguide/deploy-apps/blue-green.html	.	
	
The	API	gateway	is	the	single	point	of	entry	for	communication	with	the	microservices.	There	are	three	types	
of	micro-service:	

1. Composite:	The	composite	is	a	jobless	microservice	that	makes	an	initial	request	to	the	Gate	Group	
backend	to	retrieve	URLs,	which	can	contain	between	5	and	15	different	types	of	data.	The	composite	
eliminates	the	need	of	having	a	separate	microservice	for	each	type	of	data.	The	composite	stores	
Device	ID	data	in	a	dedicated	Redis	cache.	The	composite	communicates	to	each	Web	(API)	service	to	

TRT	GatePOS	Middleware		 v1.0		 	 	 	 	 Ben	Mawson		2019-06-12		 	 	 		 	 4	

fetch	data	from	the	Gate	Group	backend	and	synchronise	the	database	associated	with	this	Web	(API)	
service	for	its	Device	ID.	

2. Web	(API)	services:	Examples	of	which	are	
• Content	service	which	encapsulates	the	content	result	-	the	URL	that	contains	models.	
• Images	service,	which	encapsulates	the	images	result.	

3. Workers:	The	workers	expose	no	APIs	and	trigger	aggregation.		
	
Elastic	Load	Balancer	(ELB)		

• distributes	incoming	application	traffic	and		
• contains	all	certificates	(TLS/HTTPS).		

	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Implementation
The	middleware	is	implemented	using	the	Java	programming	language,	utilising	the	Spring	Boot	framework.	
	

Environments
An	environment	is	a	deployment	of	services	that	work	together	in	order	to	facilitate	communications	
between	the	iOS	app	and	TS5	back	end	service.	There	are	five	environments:	Dev,	QA,	Staging,	UAT	and	
Prod.		
The	middleware	environments	are	independent	clusters	within	AWS,	managed	by	the	Gate	group,	each	
individually	configured	to	communicate	with	specific	backend	servers	set	up	(e.g.	for	testing)	to	generate	
data	without	impacting	actual	operations.		
Each	environment	is	configured	is	to	facilitate	different	types	of	testing,	except	for	Production	which	is	used	
with	a	live	programme	release.	
The	Middleware	system	is	deployed	in	a	QA	(Quality	Assurance)	environment	where	new	features	are	
functionally	tested,	existing	features	are	smoke	tested	and	regression	testing	is	performed.	
When	the	system	is	deployed	to	the	UAT	environment,	user	requirement	functionality	is	tested.	

TRT	GatePOS	Middleware		 v1.0		 	 	 	 	 Ben	Mawson		2019-06-12		 	 	 		 	 5	

Components
Definition	of	component	and	microservice	
	
The	components	of	the	middleware	and	the	number	of	simultaneously	running	instances	of	each	are	as	
follows:	

• External	API	gateway		 x4	 	
• API	mapping	service			 x2	
• Data	composer		 	 x2	 	
• Content	server		 	 x2	
• Composer	scheduler	(runs	a	CRON	job	every	5-10	minutes,	ephemeral)	
• Offload	server			 	 x2	
Requests	can	be	routed	to	any	of	them	from	anywhere,	then	processed.	
	
The	middleware	runs	across	a	cluster	of	multiple	computers	within	AWS,	performing	either	several	tasks	
independently	or	the	same	task,	depending	on	load.		
It	is	implemented	as	a	number	of	microservices,	some	of	which	can	be	scaled	horizontally	to	accommodate	
changes	in	load.		
The	API	gateway	service	is	horizontally	scaled	to	handle	required	traffic.	Four	instances	of	the	API	gateway	
run	discretely	in	the	production	environment,	whereas	only	two	instances	are	ever	running	in	the	
development	environment.	
At	present,	the	only	service	that	is	scaled	is	the	Composer	service	that	retrieves	and	compiles	Catering	Sync	
data	for	each	mapped	airline	from	its	corresponding	TS5	endpoint.	
It	is	scaled	according	to	how	many	airlines	the	system	supports.	There	is	one	Composer	service	instance	per	
airline.	
The	data-composer-scheduler	is	triggered	periodically	to	fetch	from	TS5	all	catering	data,	which	the	
middleware		processes	and	in	some	cases	augments,	before	placing	it	in	the	content	service.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

TRT	GatePOS	Middleware		 v1.0		 	 	 	 	 Ben	Mawson		2019-06-12		 	 	 		 	 6	

Data exchange via middleware between iOS app and TS5
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

Hardware
Middleware	is	run	purely	on	Amazon	Elastic	Compute	Cloud	(EC2),	on	a	T2.medium	instance,	with	2	CPUs	
and	4GB	RAM.	For	specific	details	of	the	AWS	server,	see	https://aws.amazon.com/ec2/instance-types/	.	

External services

Databases
Redis	 In-memory	data	store	used	to	cache	database	queries	for	faster	access.	

S3	 Managed	AWS	service	for	flat	file	storage.	Files	and	objects	only	-	part	of	the	data	sent	to	
the	iOS	app	is	in	.png	format,	images	come	from	S3.	This	is	also	used	for	data	offload	post-
flight.	On	closing	a	sector,	all	transactions	packaged	into	a	response	are	sent	by	iOS	to	the	
middleware	as	a	base64-encoded	GZIP	JSON	file.			
The	middleware	decodes	and	decompresses	the	file,	dynamically	creating	a	file	name	from	
the	following	fields:	companyID,	deviceID,	deviceActivityId,	timestamp.	
It	then	uploads	the	decompressed	file	to	S3,	which	TS5	retrieves	from	there	according	to	a	
Gate-configured	schedule.		

MongoDB	 Non-relational,	document-based	data	storage	contains	data	returned	from	TS5,	
unstructured.	

MySQL	 Relational	datastore,	for	well-formed	data	(small	amount)	e.g.	for	every	airline,	access	
tokens,	API	URL.	

Other
	

RabbitMQ	 Asynchronous	distributed	message	broker	service.	

InteliJ	IDEA	 IDE	for	Java	development.	
	

TRT	GatePOS	Middleware		 v1.0		 	 	 	 	 Ben	Mawson		2019-06-12		 	 	 		 	 7	

Database usage by component
api-gateway	 does	not	use	databases	
api-mapping	 MySQL:	relates	an	airline	to	a	backend	TS5	API	to	get	info	for	that	airline,	

maps	an	ICAO	code	to	a	URL	
data-composer	 Currently	using	MySQL	and	MongoDB	,	but	after	refactoring	will	use	

neither.	Data	will	be	stored	that	was	cached	directly	in	the	content	service.	
data-composer-scheduler	 does	not	use	databases	
content	server	 Redis:	in-memory	database,	mostly	for	caching	content	to	be	served	

(catering	sync	payloads)	
offload	server	 AWS	S3	bucket.	
	

Note:	
Every	environment	has	multiple	S3	buckets.	Documentation	is	also	stored	in	S3.	

Other data storage services
Nexus	provides	repos	for	shared	Java	library	and	Docker	images	(credentials	required)	
• https://nexus.bsgg.co.uk/#browse/browse:gate-snapshots:com%2Fbsd%2Fgate%2Fgrd-core-lib		
• https://nexus.bsgg.co.uk/#browse/browse:gate-releases:com%2Fbsd%2Fgate%2Fgrd-core-lib		
• https://nexus.bsgg.co.uk/#browse/browse:bsgg-docker:v2%2Fgate		
One	java	library	is	currently	stored	in	AWS.	All	docker	images	and	libraries	will	be	stored	in	AWS	after	MW	
refactor	to	v6.	

Scaling
The	middleware	does	not	currently	auto-scale	(respond	in	real	time	by	creating	more	virtual	instances	of	a	
service)	according	to	traffic	fluctuations.	
The	API	gateway	however,	which	handles	the	iOS	requests,	is	run	in	four	simultaneous	instances	in	order	to	
have	redundant	capacity.		

Real-time monitoring
In	the	production	environment,	Gate	has	implemented	real-time	monitoring	using	the	Grafana	dashboard	to	
display	their	own	specified	metrics	collected	from	all	instances.	TRT	do	not	have	access	to	this	data.	

Redundancy
Kubernetes	runs	our	services	in	Docker	containers	and	monitors	them	to	ensure	the	containers	are	running.	
If	Kubernetes	determines	that	a	pod	has	crashed,	it	schedules	it	for	removal	and	replaces	it.	

This	can	happen	in	two	ways:	
• When	Kubernetes	removes	the	crashed	pod,	it	can	start	restart	that	pod	on	the	same	node.	This	

results	in	a	faster	restart	time,	because	the	Docker	image	is	already	downloaded	to	that	node.	
• Alternatively,	it	will	restart	that	pod	on	a	different	node,	requiring	the	Docker	image	(500	MB)	to	be	

downloaded	again	from	Nexus.		
Once	the	Docker	image	downloads,	the	service	takes	around	20	seconds	to	start.	In	the	worst	case,	it	will	
take	up	to	90	seconds	to	download	and	start	a	new	instance	on	a	new	node.	

System alerts
Gate	has	a	PCI-compliant	dashboard	for	RabbitMQ,	only	available	to	them	within	their	Amazon	VPC.	This	
measures	the	number	of	messages	on	queues,	connections	being	handled,	available	queues	and	their	
properties.	
	

TRT	GatePOS	Middleware		 v1.0		 	 	 	 	 Ben	Mawson		2019-06-12		 	 	 		 	 8	

	

Support set-up
Gate	is	responsible	for	monitoring	the	operation	of	the	middleware.	Marlabs	provide	24/7	support.	

Airline-specific technology
The	iOS	app	only	integrates	with	Gate	technologies,	via	the	middleware.	It	has	no	integration	to	airline-
specific	technologies.	

Service inter-operation
How	do	services	influence	each	other?		In	two	ways:	
(1) Looking	for	a	specific	response	over	HTTP	REST,	inside	the	cluster	
(2) Pushing	messages	onto	a	queue	which	are	not	looking	for	specific	response,	simply	creating	work	on	a	

queue.		This	uses	a	transport	layer	called	Advanced	Message	Queuing	Protocol	(AMQP)	for	RabbitMQ	to	
push	a	fire-and-forget	message.	RabbitMQ	server	ensures	message	is	passed	onto	another	component	
to	execute	a	task.		

Example	of	use:		

• Data	Composer	Scheduler	(CRON)	starts,	pushes	message	to	queue	scheduling	background	sync	
• The	message	is	placed	on	a	queue	from	where	it	is	picked	up	by	one	of	the	instances	of	the	

Composer	microservice.	
• The	message	is	received	by	Composer	microservice,	which	performs	a	background	sync	(to	fetch	

latest	data	from	TS5	and	prepare	it	for	the	iOS	app)	and	triggers	notification	of	this	action.	
	
	

TRT	GatePOS	Middleware		 v1.0		 	 	 	 	 Ben	Mawson		2019-06-12		 	 	 		 	 9	

Back-up contingency
Data	is	persisted	to	MongoDB	with	3	nodes	for	failover	in	the	Redis	cluster	on	AWS	EC2	using	Elastic	Block	
Store.		As	the	middleware	retains	no	data	and	all	data	comes	from	TS5,	it	is	within	TS5	that	redundancy	is	
required.	

Load balancing
The	Elastic	Application	Load	Balancer,	which	is	part	of	the	AWS	EC2	Cloud	Service,	routes	service	requests	for	
a	microservice	to	one	of	the	instances	of	that	microservice.	
Example	of	use:	

• There	are	four	API	gateway	instances	to	which	100	request	messages	are	routed.		
• The	load	server	splits	these	into	four	packets	of	25	messages	and	performs	the	SSL	termination	

for	the	middleware.		
• The	messages	are	processed	without	encryption,	within	the	cluster	(HTTP).	

Middleware payload
See	Payload documentation	

Middleware monitoring
See	MW Monitoring
	

Further Reading
Internal	documentation	

	
Data	uploaded	by	the	iOS	app	post-flight	 ePOS	sync	Payload	

Architecture	of	the	middleware	 Architecture	-	Middleware	

External	documentation	 	
Amazon	Redis	Cluster	 https://aws.amazon.com/redis/Redis_Cluster_101/	
Amazon	Elastic	Compute	Cloud	(EC2)		 https://aws.amazon.com/ec2/	
Application	analytics	platform:	Grafana		 https://grafana.com/docs/	
Cloud	repository	manager:	Nexus		 https://nexus.bsgg.co.uk/#browse/welcome	
Application	packaging	service:	Docker	 https://docs.docker.com/	
Application	container	orchestration	engine:	
Kubernetes		

https://kubernetes.io/docs/home/	

	

